Journal of Marine Science and Engineering (Jul 2020)

Determination of Semi-Empirical Models for Mean Wave Overtopping Using an Evolutionary Polynomial Paradigm

  • Corrado Altomare,
  • Daniele B. Laucelli,
  • Hajime Mase,
  • Xavi Gironella

DOI
https://doi.org/10.3390/jmse8080570
Journal volume & issue
Vol. 8, no. 8
p. 570

Abstract

Read online

The present work employs the so-called Evolutionary Polynomial Regression (EPR) algorithm to build up a formula for the assessment of mean wave overtopping discharge for smooth sea dikes and vertical walls. EPR is a data-mining tool that combines and integrates numerical regression and genetic programming. This technique is here employed to dig into the relationship between the mean discharge and main hydraulic and structural parameters that characterize the problem under study. The parameters are chosen based on the existing and most used semi-empirical formulas for wave overtopping assessment. Besides the structural freeboard or local wave height, the unified models highlight the importance of local water depth and wave period in combination with foreshore slope and dike slope on the overtopping phenomena, which are combined in a unique parameter that is defined either as equivalent or imaginary slope. The obtained models aim to represent a trade-off between accuracy and parsimony. The final formula is simple but can be employed for a preliminary assessment of overtopping rates, covering the full range of dike slopes, from mild to vertical walls, and of water depths from the shoreline to deep water, including structures with emergent toes.

Keywords