Nature Communications (Nov 2024)

Time-efficient atmospheric water harvesting using Fluorophenyl oligomer incorporated MOFs

  • Min Seok Kang,
  • Incheol Heo,
  • Sun Ho Park,
  • Jinhee Bae,
  • Sangyeop Kim,
  • Gyuchan Kim,
  • Byung-Hyun Kim,
  • Nak Cheon Jeong,
  • Won Cheol Yoo

DOI
https://doi.org/10.1038/s41467-024-53853-7
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Adsorption-based atmospheric water harvesting (AWH) has the potential to address water scarcity in arid regions. However, developing adsorbents that effectively capture water at a low relative humidity (RH < 30%) and release it with minimal energy consumption remains a challenge. Herein, we report a fluorophenyl oligomer (FO)-incorporated metal-organic framework (MOF), HKUST-1 (FO@HK), which exhibits fast adsorption kinetics at low RH levels and facile desorption by sunlight. The incorporated fluorophenyl undergoes vapor-phase polymerization at the metal center to generate fluorophenyl oligomers that enhance the hydrolytic stability of FO@HK while preserving its characteristic water sorption behavior. The FO@HK exhibited vapor sorption rates of 8.04 and 11.76 L kg−1 MOF h−1 at 20 and 30% RH, respectively, which are better than the state-of-the-art AWH sorbents. Outdoor tests using a solar-driven large-scale AWH device demonstrate that the sorbent can harvest 264.8 mL of water at a rate of 2.62 L kg−1 MOF per day. This study provides a ubiquitous strategy for transforming water-sensitive MOFs into AWH sorbents.