PLoS ONE (Jan 2013)

Population differentiation and species formation in the deep sea: the potential role of environmental gradients and depth.

  • Robert M Jennings,
  • Ron J Etter,
  • Lynn Ficarra

DOI
https://doi.org/10.1371/journal.pone.0077594
Journal volume & issue
Vol. 8, no. 10
p. e77594

Abstract

Read online

Ecological speciation probably plays a more prominent role in diversification than previously thought, particularly in marine ecosystems where dispersal potential is great and where few obvious barriers to gene flow exist. This may be especially true in the deep sea where allopatric speciation seems insufficient to account for the rich and largely endemic fauna. Ecologically driven population differentiation and speciation are likely to be most prevalent along environmental gradients, such as those attending changes in depth. We quantified patterns of genetic variation along a depth gradient (1600-3800m) in the western North Atlantic for a protobranch bivalve (Nuculaatacellana) to test for population divergence. Multilocus analyses indicated a sharp discontinuity across a narrow depth range, with extremely low gene flow inferred between shallow and deep populations for thousands of generations. Phylogeographical discordance occurred between nuclear and mitochondrial loci as might be expected during the early stages of species formation. Because the geographic distance between divergent populations is small and no obvious dispersal barriers exist in this region, we suggest the divergence might reflect ecologically driven selection mediated by environmental correlates of the depth gradient. As inferred for numerous shallow-water species, environmental gradients that parallel changes in depth may play a key role in the genesis and adaptive radiation of the deep-water fauna.