Applied Sciences (Jun 2021)

Investigation of the Thermal Conductivity of Silicon-Base Composites: The Effect of Filler Materials and Characteristic on Thermo-Mechanical Response of Silicon Composite

  • Giacomo Riccucci,
  • Lorenzo Pezzana,
  • Simone Lantean,
  • Alice Tori,
  • Silvia Spriano,
  • Marco Sangermano

DOI
https://doi.org/10.3390/app11125663
Journal volume & issue
Vol. 11, no. 12
p. 5663

Abstract

Read online

Thermal conductivity is a key property in many applications from electronic to informatics. The interaction of fillers with Sylgard 184 was studied; this study explores new composites and the influence of metal particles (copper and nickel), carbon-based materials (carbon nanotubes and carbon black), and ceramic nanoparticles (boron nitride) as fillers to enhance thermal properties of silicon-based composites. The effect of the fillers on the final performances of the composite materials was evaluated. The influence of filler volume, dimension, morphology, and chemical nature is studied. Specifically, FT-IR analysis was used to evaluate curing of the polymer matrix. DSC was used to confirm the data and to further characterize the composites. Thermo-mechanical properties were studied by DMTA. The filler morphology was analyzed by SEM. Finally, thermal conductivity was studied and compared, enlightening the correlation with the features of the fillers. The results demonstrate a remarkable dependence among the type, size, and shape of the filler, and thermal properties of the composite materials. Underlining a that the volume filler influenced the thermal conductivity obtaining the best results with the highest added volume filler and higher positive impact on the k of the composites is reached with large particles and with irregular shapes. In contrast, the increase of filler amount affects the rigidity of the silicon-matrix, increasing the rigidity of the silicon-based composites.

Keywords