ABSTRACT The first case of coronavirus disease 2019 (COVID-19) within the White Mountain Apache Tribe (WMAT) in Arizona was diagnosed almost 1 month after community transmission was recognized in the state. Aggressive contact tracing allowed for robust genomic epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and subsequent phylogenetic analyses implicated only two virus introductions, which resulted in the spread of two unique viral lineages on the reservation. The phylogenies of these lineages reflect the nature of the introductions, the remoteness of the community, and the extraordinarily high attack rates. The timing and space-limited nature of the outbreaks validate the public health tracing efforts involved, which were illustrated by multiple short transmission chains over a period of several weeks, eventually resulting in extinction of the lineages. Comprehensive sampling and successful infection control efforts are illustrated in both the effective population size analyses and the limited mortality outcomes. The rapid spread and high attack rates of the two lineages may be due to a combination of sociological determinants of the WMAT and a seemingly enhanced transmissibility. The SARS-CoV-2 genomic epidemiology of the WMAT demonstrates a unique local history of the pandemic and highlights the extraordinary and successful efforts of their public health response. IMPORTANCE This article discusses the introduction and spread of two unique viral lineages of SARS-CoV-2 within the White Mountain Apache Tribe in Arizona. Both genomic sequencing and traditional epidemiological strategies (e.g., contract tracing) were used to understand the nature of the spread of both lineages. Beyond providing a robust genomic analysis of the epidemiology of the outbreaks, this work also highlights the successful efforts of the local public health response.