Polymers (Sep 2024)

Crack-Based Composite Flexible Sensor with Superhydrophobicity to Detect Strain and Vibration

  • Yazhou Zhang,
  • Huansheng Wu,
  • Linpeng Liu,
  • Yang Yang,
  • Changchao Zhang,
  • Ji’an Duan

DOI
https://doi.org/10.3390/polym16172535
Journal volume & issue
Vol. 16, no. 17
p. 2535

Abstract

Read online

Vibration sensors are widely applied in the detection of faults and analysis of operational states in engineering machinery and equipment. However, commercial vibration sensors with a feature of high hardness hinder their usage in some practical applications where the measured objects have irregular surfaces that are difficult to install. Moreover, as the operating environments of machinery become increasingly complex, there is a growing demand for sensors capable of working in wet and humid conditions. Here, we present a flexible, superhydrophobic vibration sensor with parallel microcracks. The sensor is fabricated using a femtosecond laser direct writing ablation strategy to create the parallel cracks on a PDMS film, followed by spray-coating with a conductive ink composed of MWCNTs, CB, and PDMS. The results demonstrate that the developed flexible sensor exhibits a high-frequency response of up to 2000 Hz, a high acceleration response of up to 100 m/s2, a water contact angle as high as 159.61°, and a linearity of 0.9812 between the voltage signal and acceleration. The results indicate that the sensor can be employed for underwater vibration, sound recognition, and vibration monitoring in fields such as shield cutters, holding significant potential for mechanical equipment vibration monitoring and speech-based human–machine interaction.

Keywords