Serie Científica de la Universidad de las Ciencias Informáticas (Jun 2022)

Problemas desbalanceados en el aprendizaje profundo

  • Odeynis Valdés Suárez,
  • Héctor Raúl González Diez

Journal volume & issue
Vol. 15, no. 6
pp. 18 – 34

Abstract

Read online

El contenido de este trabajo está centrado en la obtención de resultados, que demuestren la eficiencia de los modelos de aprendizaje profundo con estrategias para la solución al desbalance de la información en la detección de anomalías, en específico, en la detección de fraude de tarjeta de crédito. Para ello se realiza una fundamentación previa de los conceptos básicos relacionados con este campo de estudio, ya sean los avances y retos que presenta, así como las métricas, herramientas y tecnologías que se usan para su estudio, metodología y otras técnicas que se usan. Se definen las soluciones al problema del desbalance de la información a utilizar, se eligen los modelos de Deep Learning para realizar la detección de fraude de tarjeta de crédito, además de definir su estructura. Con estos modelos definidos se realizan las evaluaciones y comparaciones correspondientes para comprobar su efectividad mediante las métricas definidas, lo que va a permitir sentar las bases para la obtención de resultados concluyentes con respecto a la efectividad de los modelos, los cuales son el resultado final de este artículo.

Keywords