Journal of Saudi Chemical Society (May 2024)

Preparation and characterization of citreorosein nanoparticles with improved bioavailability and cytotoxic potential

  • Hazrat Ali,
  • Yasar Shah,
  • Reem M. Alnemari,
  • Fazli Khuda,
  • Atif Ali Khan Khalil,
  • Arwa Sultan Alqahtani,
  • Sultan Mehtap Büyüker,
  • Mi-Jeong Ahn,
  • Muhammad Shafique

Journal volume & issue
Vol. 28, no. 3
p. 101855

Abstract

Read online

The present study was designed to improve the aqueous solubility and dissolution rate of citreorosein, a poorly water soluble drug, by producing its nanoparticles (NPs) using an “antisolvent precipitation with a syringe pump” (APSP) method. Various process parameters including flow rate, stirring speed, temperature, drug concentration and solvent-antisolvent ratio were investigated and optimized to obtain the smallest particle size of citreorosein. The prepared NPs were subjected to different analytical techniques such as SEM, FTIR, XRD and DLS. The NPs were tested for different dissolution parameters including difference (f1) and similarity factors (f2), dissolution efficiency (DE) and mean dissolution time (MDT). The antioxidant potential of citreorosein and its NPs were evaluated using DPPH, ABTS, and FRAP models, while their cytotoxicity was tested on various cancer cell lines such as breast (MDA-MB-231), lung (A549) and liver (HepG2), using the MTT assay. The specificity of the test compound was investigated against two normal human primary epithelial cells including renal (HRPTEpiC) and alveolar (HPAEpiC) cells. DLS analysis revealed that the prepared NPs were less than 200 nm in size while SEM and XRD confirmed their rod shape and amorphous nature, respectively. Citreorosein-NPs exhibited enhanced solubility and dissolution rate in all medias as compared to pure citreorosein. The NPs displayed significant antioxidant effects against ABTS, DPPH and FRAP models, with IC50 values of22.6, 21.45 and 27.30 µg/ml, respectively. Moreover, it showed significant cytotoxic activity against MDA-MB-231, A549 and HepG2 cells, with IC50 values of 3.45, 4.5 and 6.23 µg/ml, respectively. Furthermore, the NPs demonstrated high selectivity index values for the aforementioned cell lines as compared to reference drugs. This study demonstrated that APSP method successfully produced citreorosein-NPs and hence, showed better aqueous solubility, dissolution rate, antioxidant and cytotoxic activities than the pure compound.

Keywords