We demonstrate theoretically and experimentally that complete light transmission can be realized using a photonic heterostructure containing a tunable dielectric layer inserted between two different truncated photonic crystals (PCs). A perfect tunneling state is produced within enlarged photonic band gap (PBG) of the heterostructure by varying the thickness of inserted dielectric layer and the transmittance of the tunneling state depends on the dielectric layer thickness. Additionally, the tunneling state frequency varies with inserted layer thickness but is always located within the small overlapped PBG of two PCs. Therefore, both a perfect tunneling state and an ultrawide PBG can be realized in these heterostructures. The experimental results showed good agreement with theoretical values.