E3S Web of Conferences (Jan 2021)

Investigation of the influence of the carbon dioxide (CO2) injection rate on the activity of the water pressure system during gas condensate fields development

  • Matkivskyi Serhii,
  • Kondrat Oleksandr,
  • Burachok Oleksandr

DOI
https://doi.org/10.1051/e3sconf/202123001011
Journal volume & issue
Vol. 230
p. 01011

Abstract

Read online

The development of gas condensate fields under the conditions of elastic water drive is characterized by uneven movement of the gas-water. Factors of hydrocarbon recovery from producing reservoirs which are characterized by the active water pressure drive on the average make up 50-60%. To increase the efficiency of fields development, which are characterized by an elastic water drive, a study of the effect of different volumes of carbon dioxide injection at the gas-water contact on the activity of the water pressure system and the process of flooding producing wells was carried out. Using a three-dimensional model, the injection of carbon dioxide into wells located at the boundary of gas-water contact with flow rates from 20 to 500 thousand m3/day was investigated. Analyzing the simulation data, it was found that increasing the volume of carbon dioxide injection provides an increase in accumulated gas production and a significant reduction in water production. The main effect of the introduction of this technology is achieved by increasing the rate of carbon dioxide injection to 300 thousand m3/day. The set injection rates allowed us to increase gas production by 67% and reduce water production by 83.9% compared to the corresponding indicators without injection of carbon dioxide. Taking into account above- mentioned, the final decision on the introduction of carbon dioxide injection technology and optimal technological parameters of producing and injection wells operation should be made on the basis of a comprehensive technical and economic analysis using modern methods of the hydrodynamic modeling of reservoir systems.