Ecotoxicology and Environmental Safety (Oct 2021)

Feasibility of using Mg/Al-based layered double hydroxides as an inactivating agent to interrupt phosphorus release from contaminated agricultural drainage ditch sediments

  • Huaijie He,
  • Ling Liu,
  • Qi Li,
  • Wenming Yan

Journal volume & issue
Vol. 223
p. 112599

Abstract

Read online

This study aimed to evaluate the feasibility of using Mg/Al-based layered double hydroxides (Mg/Al-LDHs) treatment to prevent phosphorus release from sediments of agricultural drainage ditches. A high-resolution diffusive gradient film technique and a high-resolution peeper technique were used to measure the phosphorus and iron concentrations in the overlying water and sediment profiles at sub-millimeter vertical resolution. Results demonstrated that Mg/Al-LDHs effectively reduced the concentrations of soluble reactive P (SRP) (about 69%) in the overlying water and the concentrations of SRP (about 37.42%) and labile P (about 36.72%) in the pore water. The highly positive correlation (p < 0.01) between SRP and soluble Fe, labile P and labile Fe in the sediment profiles provided high-resolution evidence for the simultaneous release of iron and phosphorus in sediments. Furthermore, Mg/Al-LDHs inactivated mobile P (NH4Cl-P and BD-P) in the uppermost sediment (0–50 mm) and then transformed the mobile P to more stable P (NaOH-rP, HCl-P, and Res-P) (about 81% of total extractable P). An inactivation layer with low phosphorus concentrations was observed in the upper sediment. In brief, the addition of Mg/Al-LDHs to the sediment surface of agricultural drainage ditches was effective in reducing SRP concentrations in the overlying water while effectively hindering the release of sediment internal phosphorus from the pore water to the overlying water.

Keywords