Вавиловский журнал генетики и селекции (May 2024)

Search for biocontrol agents among endophytic lipopeptidesynthesizing bacteria <i>Bacillus</i> spp. to protect wheat plants against Greenbug aphid (<i>Schizaphis graminum</i>)

  • S. D. Rumyantsev,
  • V. Y. Alekseev,
  • A. V. Sorokan,
  • G. F. Burkhanova,
  • E. A. Cherepanova,
  • I. V. Maksimov,
  • S. V. Veselova

DOI
https://doi.org/10.18699/vjgb-24-32
Journal volume & issue
Vol. 28, no. 3
pp. 276 – 287

Abstract

Read online

Beneficial endophytic bacteria can suppress the development of insect pests through direct antagonism, with the help of metabolites, or indirectly by the induction of systemic resistance through the regulation of hormonal signaling pathways. Lipopeptides are bacterial metabolites that exhibit direct antagonistic activity against many organisms, including insects. Also, lipopeptides are able to trigger induced systemic resistance (ISR) in plants against harmful organisms, but the physiological mechanisms of their action are just beginning to be studied. In this work, we studied ten strains of bacteria isolated from the tissues of wheat and potatoes. Sequencing of the 16S rRNA gene showed that all isolates belong to the genus Bacillus and to two species, B. subtilis and B. velezensis. The genes for lipopeptide synthetase – surfactin synthetase (Bs_srf ), iturin synthetase (Bs_ituA, Bs_ituB) and fengycin synthetase (Bs_fenD) – were identified in all bacterial isolates using PCR. All strains had high aphicidal activity against the Greenbug aphid (Schizaphis graminum Rond.) due to the synthesis of lipopeptides, which was proven using lipopeptiderich fractions (LRFs) isolated from the strains. Endophytic lipopeptide-synthesizing strains of Bacillus spp. indirectly affected the viability of aphids, the endurance of plants against aphids and triggered ISR in plants, which manifested itself in the regulation of oxidative metabolism and the accumulation of transcripts of the Pr1, Pr2, Pr3, Pr6 and Pr9 genes due to the synthesis of lipopeptides, which was proven using LRF isolated from three strains: B. subtilis 26D, B. subtilis 11VM, and B. thuringiensis B-6066. We have for the first time demonstrated the aphicidal effect of fengycin and the ability of the fengycin-synthesizing strains and isolates, B. subtilis Ttl2, Bacillus sp. Stl7 and B. thuringiensis B-6066, to regulate components of the pro-/antioxidant system of aphid-infested plants. In addition, this work is the first to demonstrate an elicitor role of fengycin in triggering a systemic resistance to S. graminum in wheat plants. We have discovered new promising strains and isolates of endophytes of the genus Bacillus, which may be included in the composition of new biocontrol agents against aphids. One of the criteria for searching for new bacteria active against phloem-feeding insects can be the presence of lipopeptide synthetase genes in the bacterial genome.

Keywords