Does Larval Rearing Diet Lead to Premating Isolation in <i>Spodoptera litura</i> (Fabricius) (Lepidoptera: Noctuidae)?
Xue-Yuan Di,
Bin Yan,
Cheng-Xu Wu,
Xiao-Fei Yu,
Jian-Feng Liu,
Mao-Fa Yang
Affiliations
Xue-Yuan Di
Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guiyang 550025, China
Bin Yan
Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guiyang 550025, China
Cheng-Xu Wu
College of Forestry, Guizhou University, Guiyang 550025, China
Xiao-Fei Yu
College of Tobacco Science, Guizhou University, Guiyang 550025, China
Jian-Feng Liu
Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guiyang 550025, China
Mao-Fa Yang
Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guiyang 550025, China
Host plant preference during the larval stage may help shape not only phenotypic plasticity but also behavioral isolation. We assessed the effects of diet on population parameters and mate choice in Spodoptera litura. We raised larvae fed on tobacco, Chinese cabbage, or an artificial diet, and we observed the shortest developmental time and highest fecundity in individuals fed the artificial diet. However, survival rates were higher for larvae on either of the natural diets. Population parameters including intrinsic rate of increase and finite rate of increase were significantly higher with the artificial diet, but this diet led to a lower mean generation time. Copulation duration, copulation time, and number of eggs reared significantly differed between diets. In terms of mate choice, females on the artificial diet rarely mated with males fed on a natural host. Our results support the hypothesis that different diets may promote behavioral isolation, affecting mating outcomes. Thus, findings for populations fed an artificial diet may not reflect findings for populations in the field.