Additive Manufacturing Letters (Jul 2023)

Bend-Forming: A CNC deformation process for fabricating 3D wireframe structures

  • Harsh G. Bhundiya,
  • Zachary C. Cordero

Journal volume & issue
Vol. 6
p. 100146


Read online

This paper presents a computer numerical control (CNC) deformation process, termed Bend-Forming, for fabricating 3D wireframe structures. The process relies on the combination of CNC wire bending with mechanical joints to construct reticulated structures from wire feedstock. A key component of the process is a path planning framework which uses Euler paths and geometrical computations to derive fabrication instructions for arbitrary 3D wireframe geometries. We demonstrate the process by fabricating exemplary structures on the order of 1 m, including reticulated columns, shells, and trusses, with rapid build times compared to other additive manufacturing techniques. The structures fabricated herein contain defects which result in residual stress and imperfect geometries. To determine the tolerances needed to fabricate accurate structures, we develop a model of error stack-up for Bend-Forming, using fabrication defects in feed length, bend and rotate angle, and strut curvature. We find that for tetrahedral trusses fabricated with Bend-Forming, defects in feed length and strut curvature have a large effect on the surface precision and stiffness of the truss, respectively, and are thus important tolerances to control to achieve structural performance metrics. Overall, Bend-Forming is a versatile and low-power process that is well suited for a wide-range of applications, from rapid prototyping of wireframe structures to in-space manufacturing.