Sirt5 improves cardiomyocytes fatty acid metabolism and ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via CPT2 de-succinylation
Maoxiong Wu,
Jing Tan,
Zhengyu Cao,
Yangwei Cai,
Zhaoqi Huang,
Zhiteng Chen,
Wanbing He,
Xiao Liu,
Yuan Jiang,
Qingyuan Gao,
Bingqing Deng,
Jingfeng Wang,
Woliang Yuan,
Haifeng Zhang,
Yangxin Chen
Affiliations
Maoxiong Wu
Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
Jing Tan
Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
Zhengyu Cao
Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
Yangwei Cai
Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
Zhaoqi Huang
Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
Zhiteng Chen
Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
Wanbing He
Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
Xiao Liu
Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
Yuan Jiang
Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
Qingyuan Gao
Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
Bingqing Deng
Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
Jingfeng Wang
Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Corresponding author. Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
Woliang Yuan
Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Corresponding authors. Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
Haifeng Zhang
Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Corresponding authors. Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
Yangxin Chen
Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Corresponding author. Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
Rationale: The disruption of the balance between fatty acid (FA) uptake and oxidation (FAO) leads to cardiac lipotoxicity, serving as the driving force behind diabetic cardiomyopathy (DbCM). Sirtuin 5 (Sirt5), a lysine de-succinylase, could impact diverse metabolic pathways, including FA metabolism. Nevertheless, the precise roles of Sirt5 in cardiac lipotoxicity and DbCM remain unknown. Objective: This study aims to elucidate the role and underlying mechanism of Sirt5 in the context of cardiac lipotoxicity and DbCM. Methods and results: The expression of myocardial Sirt5 was found to be modestly elevated in diabetic heart failure patients and mice. Cardiac dysfunction, hypertrophy and lipotoxicity were exacerbated by ablation of Sirt5 but improved by forced expression of Sirt5 in diabetic mice. Notably, Sirt5 deficiency impaired FAO without affecting the capacity of FA uptake in the diabetic heart, leading to accumulation of FA intermediate metabolites, which mainly included medium- and long-chain fatty acyl-carnitines. Mechanistically, succinylomics analyses identified carnitine palmitoyltransferase 2 (CPT2), a crucial enzyme involved in the reconversion of fatty acyl-carnitines to fatty acyl-CoA and facilitating FAO, as the functional succinylated substrate mediator of Sirt5. Succinylation of Lys424 in CPT2 was significantly increased by Sirt5 deficiency, leading to the inactivation of its enzymatic activity and the subsequent accumulation of fatty acyl-carnitines. CPT2 K424R mutation, which mitigated succinylation modification, counteracted the reduction of enzymatic activity in CPT2 mediated by Sirt5 deficiency, thereby attenuating Sirt5 knockout-induced FAO impairment and lipid deposition. Conclusions: Sirt5 deficiency impairs FAO, leading to cardiac lipotoxicity in the diabetic heart through the succinylation of Lys424 in CPT2. This underscores the potential roles of Sirt5 and CPT2 as therapeutic targets for addressing DbCM.