Information (Mar 2023)

Aspect-Based Sentiment Analysis with Dependency Relation Weighted Graph Attention

  • Tingyao Jiang,
  • Zilong Wang,
  • Ming Yang,
  • Cheng Li

DOI
https://doi.org/10.3390/info14030185
Journal volume & issue
Vol. 14, no. 3
p. 185

Abstract

Read online

Aspect-based sentiment analysis is a fine-grained sentiment analysis that focuses on the sentiment polarity of different aspects of text, and most current research methods use a combination of dependent syntactic analysis and graphical neural networks. In this paper, a graph attention network aspect-based sentiment analysis model based on the weighting of dependencies (WGAT) is designed to address the problem in that traditional models do not sufficiently analyse the types of syntactic dependencies; in the proposed model, graph attention networks can be weighted and averaged according to the importance of different nodes when aggregating information. The model first transforms the input text into a low-dimensional word vector through pretraining, while generating a dependency syntax graph by analysing the dependency syntax of the input text and constructing a dependency weighted adjacency matrix according to the importance of different dependencies in the graph. The word vector and the dependency weighted adjacency matrix are then fed into a graph attention network for feature extraction, and sentiment polarity is predicted through the classification layer. The model can focus on syntactic dependencies that are more important for sentiment classification during training, and the results of the comparison experiments on the Semeval-2014 laptop and restaurant datasets and the ACL-14 Twitter social comment dataset show that the WGAT model has significantly improved accuracy and F1 values compared to other baseline models, validating its effectiveness in aspect-level sentiment analysis tasks.

Keywords