Remote Sensing (Feb 2019)
Co- and post-seismic Deformation Mechanisms of the M<sub>W</sub> 7.3 Iran Earthquake (2017) Revealed by Sentinel-1 InSAR Observations
Abstract
The extraction of high-accuracy co- and post-seismic deformation fields and inversions of seismic slip distributions is significant in the comprehension of seismogenic mechanisms. On 12 November 2017, a MW 7.3 earthquake occurred on the border between Iran and Iraq. To construct the co-seismic deformation field, Sentinel-1A synthetic aperture radar (SAR) images from three tracks were used. Based on a prior knowledge, least-squares iterative approximation was employed to construct the three-dimensional (3D) co-seismic deformation field. to derive a time series of 2D post-seismic deformation, the multidimensional small baseline subset (MSBAS) technique was use. Co-seismic deformation fields were asymmetric; the maximum relative displacement was nearly 90cm in the radar line-of-sight between two centers of co-seismic deformation. The 3D co-seismic deformation field showed southwestward horizontal motion and continuous subsidence-to-uplift variation from northeast to southwest. The two-dimensional (2D) post-seismic deformation time series showed a gradual decaying trend and good correspondence with the aftershock distribution. The main mechanism of post-seismic deformation was an afterslip of the post-seismic faults. We used the elastic half-space model to invert co-seismic deformation fields and obtain source parameters of the slip model. The maximum and average slips were 2.5 and 0.72 m, respectively. The average slip angle was 126.38° and the moment magnitude was MW 7.34. The results of this study will contribute to research on regional tectonic activities.
Keywords