Energies (Jan 2019)

Assessment of Productivity and Economic Viability of Combined Food and Energy (CFE) Production System in Denmark

  • Ying Xu,
  • Lisa Mølgaard Lehmann,
  • Silvestre García de Jalón,
  • Bhim Bahadur Ghaley

DOI
https://doi.org/10.3390/en12010166
Journal volume & issue
Vol. 12, no. 1
p. 166

Abstract

Read online

Agro-ecosystems for integrated food, fodder, and biomass production can contribute to achieving European Union goals to increase renewable energy sources and reduce greenhouse gas emissions. The study objective was to evaluate the productivity and economic returns from a combined food and energy (CFE) system compared to sole winter wheat and sole short rotation woody crop (SRWC) production. Two excel-based models viz. Yield-SAFE and Farm-SAFE, were used to simulate agronomic productivity and economic assessment respectively. Yield-SAFE was calibrated and validated with measured data from CFE from 1996–2016. When compared over temporal scale of 21 years, CFE systems with 150–200 m alley width had the highest net present value (NPV) followed by 100 m, 50 m, sole winter wheat and sole SRWC, indicating higher profitability of CFE systems. Sensitivity analysis of NPV with ±10% yield fluctuations, and with 0–10% discount rate, demonstrated that CFE systems was more profitable than sole crops, indicating higher resilience in CFE systems. LER in CFE ranged from 1.14–1.34 indicative of higher productivity of CFE systems compared to component monocultures. Hence, the study has demonstrated that the productivity and the economic viability of CFE systems, were higher than sole crops, for informed decision making by farm managers and policy makers to contribute to renewable energy biomass production and to mitigate the impending adverse climate change effects on agricultural production.

Keywords