Science and Engineering of Composite Materials (Nov 2013)

Effect of reinforcement percentage on wear behavior of SiCp reinforced ZA43 alloy metal matrix composites

  • Marigoudar Rajaneesh N.,
  • Sadashivappa Kanakuppi

DOI
https://doi.org/10.1515/secm-2013-0024
Journal volume & issue
Vol. 20, no. 4
pp. 311 – 317

Abstract

Read online

Metal matrix composites (MMCs) are characterized by high specific strength and stiffness. Light metal alloys are reinforced with hard ceramic particles, which show better properties compared to monolithic alloys. ZA43 MMCs are fabricated by stir casting technique by reinforcing preheated silicon carbide particles (SiCp). Wear behavior of ZA43 MMCs is evaluated by conducting dry sliding wear test using a pin-on-disc wear test rig. The tests were conducted for varying loads of 9.81, 19.62, 29.43 and 39.24 N and sliding disc speeds of 2.12, 2.93, 3.66, 4.39 and 5.13 m/s at constant time of 15 min. The results reveal that the wear resistance property of the composite increases as the percentage of reinforcement increases. It was also observed that volume loss increases with increasing applied load and sliding speed. The tested samples were examined and analyzed by taking scanning electron micrographs. The dominating wear mechanisms observed were delamination, scissoring of the abrasive particle, pullout of particle, smearing of the surface and abrasion.

Keywords