IEEE Access (Jan 2020)

Reconfigurable Computation in Spiking Neural Networks

  • Fabio Schittler Neves,
  • Marc Timme

DOI
https://doi.org/10.1109/ACCESS.2020.3027966
Journal volume & issue
Vol. 8
pp. 179648 – 179655

Abstract

Read online

The computation of rank ordering plays a fundamental role in cognitive tasks and offers a basic building block for computing arbitrary digital functions. Spiking neural networks have been demonstrated to be capable of identifying the largest k out of N analog input signals through their collective nonlinear dynamics. By finding partial rank orderings, they perform k-winners-take-all computations. Yet, for any given study so far, the value of k is fixed, often to k equal one. Here we present a concept for spiking neural networks that are capable of (re)configurable computation by choosing k via one global system parameter. The spiking network acts via pulse-suppression induced by inhibitory pulse-couplings. Couplings are proportional to each units' state variable (neuron voltage), constituting an uncommon but straightforward type of leaky integrate-and-fire neural network. The result of a computation is encoded as a stable periodic orbit with k units spiking at some frequency and others at lower frequency or not at all. Orbit stability makes the resulting analog-to-digital computation robust to sufficiently small variations of both, parameters and signals. Moreover, the computation is completed quickly within a few spike emissions per neuron. These results indicate how reconfigurable k-winners-take-all computations may be implemented and effectively exploited in simple hardware relying only on basic dynamical units and spike interactions resembling simple current leakages to a common ground.

Keywords