Zdravniški Vestnik (Dec 2004)

BIOLOGY OF SOME NEUROMUSCULAR DISORDERS

  • Gerta Vrbova,
  • Irena Hausmanowa Petrusewicz

Journal volume & issue
Vol. 73, no. 0

Abstract

Read online

In order to understand and possibly interfere/ treat neuromuscular disorders it is important to analyze the biological events that may be causing the disability. We illustrate such attempts on two examples of genetically determined neuromuscular diseases: 1) Duchenne muscular dystrophy (DMD), and 2) Spinal muscular atrophy (SMA).DMD is an x-linked hereditary muscle disease that leads to progressive muscle weakness. The altered gene in DMD affects dystrophin, a muscle membrane associated proteine. Attempts were made to replace the deficient or missing gene/ protein into muscles of Duchenne children. Two main strategies were explored: 1) Myoblast and stem cell transfer and 2) Gene delivery. The possible use of methods other than the introduction of the missing gene for dystrophin into muscle fibres are based on the knowledge about the adaptive potential of muscle to different functional demands and the ability of the muscle to express a new set of genes in response to such stimuli. Stretch or overload is now known to lead to changes of gene expression in normal muscle, and the success of muscle stretch in the management of Duchenne boys is most likely to be due to such adaptive changes. Electrical stimulation of muscles is also a powerful stimulus for inducing the expression of new genes and this method too has produced beneficial effects on the progress of the disease in mice and men.SMA is a heterogeneous group of hereditary neuromuscular disorders where the loss of lower motoneurones leads to progressive weakness and muscle atrophy. The disease subdivides into 3 forms according to the severity of the symptoms and age of onset. All three forms of SMA have been mapped to chromosome 5q11.2-13.2. Clinical features of all these forms of SMA include hypotonia shortly after birth, symmetrical muscle weakness and atrophy, finger tremor, areflexia or hyporeflexia and later contractures. In patients with SMA 1 and 2 the development of all parts of the motor unit is slower. The rate of maturation is critical for the survival of both motoneurone and muscle and that events that interfere with the time course of maturation cause both motoneurone and muscle fibre death. The proposal that the SMN gene/protein is involved in the process to developmental changes in cells and therefore crucial for their survival is put forward. The understanding of the developmental changes and their influence on motoneurone and muscle survival may help to devise therapeutic interventions. These may include a) protection of the motoneurone cell body during a critical period of its development by reducing its excitability or enhancing its defences by upregulating heat shock proteins, b) stabilizing neuromuscular junctions to enhance and prolong the retrograde influences from the muscle that affect motoneurone survival, c) protecting muscle fibres from apoptosis, as well as stimulating their maturation by activity appropriate to their younger age that results from their delayed development.These approaches should be considered in addition to or in conjunction with possible interference with the gene and its product.In order to understand and possibly interfere/treat neuromuscular disorders it is important to analyze the biological events that may be causing the disability. In this presentation I would illustrate such attempts on two examples of genetically determined neuromuscular diseases: 1) Duchenne muscular dystrophy, and 2) Spinal muscular atrophy.

Keywords