The Journal of Headache and Pain (Dec 2024)

Elevated plasma CXCL12 leads to pain chronicity via positive feedback upregulation of CXCL12/CXCR4 axis in pain synapses

  • Shi-Ze Leng,
  • Mei-Jia Fang,
  • Yi-Min Wang,
  • Zhen-Jia Lin,
  • Qian-Yi Li,
  • Ya-Nan Xu,
  • Chun-Lin Mai,
  • Jun-Ya Wan,
  • Yangyinhui Yu,
  • Ming Wei,
  • Ying Li,
  • Yu-Fan Zheng,
  • Kai-Lang Zhang,
  • Ya-Juan Wang,
  • Li-jun Zhou,
  • Zhi Tan,
  • Hui Zhang

DOI
https://doi.org/10.1186/s10194-024-01917-w
Journal volume & issue
Vol. 25, no. 1
pp. 1 – 18

Abstract

Read online

Abstract Background Chronic pain poses a clinical challenge due to its associated costly disability and treatment needs. Determining how pain transitions from acute to chronic is crucial for effective management. Upregulation of the chemokine C-X-C motif ligand 12 (CXCL12) in nociceptive pathway is associated with chronic pain. Our previous study has reported that elevated plasma CXCL12 mediates intracerebral neuroinflammation and the comorbidity of cognitive impairment in neuropathic pain, but whether it is also involved in the pathogenesis of pathologic pain has not been investigated. Methods Intravenous or intrathecal injection (i.v. or i.t.) of recombinant mouse CXCL12, neutralizing antibody (anti-CXCL12) or AMD3100 [an antagonist of its receptor C-X-C chemokine receptor type 4 (CXCR4)] was used to investigate the role of CXCL12 signaling pathway in pain chronicity. Two behavioral tests were used to examine pain changes. ELISA, immunofluorescence staining, Western blot, quantitative Real Time-PCR and Cytokine array were applied to detect the expressions of different molecules. Results We found that increased plasma CXCL12 was positively correlated with pain severity in both chronic pain patients and neuropathic pain model in mice with spared nerve injury (SNI). Neutralizing plasma CXCL12 mitigated SNI-induced hyperalgesia. A single i.v. injection of CXCL12 induced prolonged mechanical hyperalgesia and activation of the nociceptive pathway. Multiple intravenous CXCL12 caused persistent hypersensitivity, enhanced structural plasticity of nociceptors and up-regulation of the CXCL12/CXCR4 axis in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH). However, intrathecal blocking of CXCL12/CXCR4 pathway by CXCL12 antibody or CXCR4 antagonist AMD3100 significantly alleviated CXCL12-induced pain hypersensitivity and pathological changes. Conclusions Our study provides strong evidence that a sustained increase in plasma CXCL12 contributes to neuropathic pain through a positive feedback loop that enhances nociceptor plasticity, and suggests that targeting CXCL12/CXCR4 axis in plasma or nociceptive pathways has potential value in regulating pain chronicity.

Keywords