Viruses (Dec 2024)
Plant Compounds Inhibit the Growth of W12 Cervical Precancer Cells Containing Episomal or Integrant HPV DNA; Tanshinone IIA Synergizes with Curcumin in Cervical Cancer Cells
Abstract
This study explores the effects of plant compounds on human papillomavirus (HPV)-induced W12 cervical precancer cells and bioelectric signaling. The aim is to identify effective phytochemicals, both individually and in combination, that can prevent and treat HPV infection and HPV associated cervical cancer. Phytochemicals were tested using growth inhibition, combination, gene expression, RT PCR, and molecular docking assays. W12 cells, derived from a cervical precancerous lesion, contain either episomal or integrated HPV16 DNA. Several compounds, including digoxin, tanshinone IIA, dihydromethysticin and carrageenan, as well as fractions of turmeric, ginger and pomegranate inhibited the growth of W12 precancer and cervical cancer cells. Curcumin and tanshinone IIA were the most active and relatively nontoxic compounds. RT-PCR analysis showed that tanshinone IIA activated the expression of p53, while repressing the expression of HPV16 E1, E2, E4, E6, and E7 viral transcripts in W12 (type 1 and 2) integrant cells. In addition, curcumin synergized with tanshinone IIA in HeLa cells. Molecular docking studies suggested tanshinone IIA and curcumin bind to the Na+/K+-ATPase ion channel, with curcumin binding with higher affinity. Our findings highlight the potential of these multifaceted phytochemicals to prevent and treat HPV-induced cervical cancer, offering a promising approach for combinatorial therapeutic intervention.
Keywords