Applied Sciences (Oct 2021)

Incorporation of Oligomeric Hydrocarbon Resins for Improving the Properties of Aircraft Tire Retreads

  • Indriasari,
  • Jacques Noordermeer,
  • Wilma Dierkes

DOI
https://doi.org/10.3390/app11219834
Journal volume & issue
Vol. 11, no. 21
p. 9834

Abstract

Read online

This study focuses on the use of oligomeric hydrocarbon resins in order to benefit from their effect on improving the performance of aircraft tire retreads. The aim was to enhance the tackiness for the retreading process and their final performance in terms of superior stress–strain properties and low heat generation in order to decrease treadwear; thus, increasing the tire’s service life, and in terms of traction or skid resistance to improve safety during landing of an aircraft. Two types of resins are investigated: a terpene phenol and an aromatic hydrocarbon C9 resin, added to compounds with different filler systems: Carbon Black (CB), hybrid Carbon Black/Silica (CB/SI), and pure Silica (SI). The rubber compounds and vulcanizates are compared to their controls for each filler system. The use of resins improves processing independent of the filler system, with a slight improvement of tensile strength, Modulus at 300% (M300%) and Elongation at Break (EAB). The incorporation of resins improves the tackiness for the compounds with all filler systems, which is beneficial for the retreading process. A significant improvement in Ice Traction (ICT) and Wet Skid Resistance (WSR) with a trade-off in Heat Build-Up (HBU) is observed in CB- and CB/SI-reinforced compounds when resins are added. Terpene phenol and aromatic hydrocarbon C9 resin show comparable ICT, while the aromatic hydrocarbon C9 resin gives a better WSR performance than the terpene phenol in all compounds. However, a slight improvement in HBU with the use of both resins is only observed in the SI-filled system. The present exploratory study into the addition of resins demonstrates the potential to significantly improve the overall performance of aircraft tire retreads, justifying more in-depth investigations into this possibility in real tires.

Keywords