Research (Jan 2021)

On-Surface Bottom-Up Construction of COF Nanoshells towards Photocatalytic H2 Production

  • Yao Chen,
  • Dong Yang,
  • Yuchen Gao,
  • Runlai Li,
  • Ke An,
  • Wenjing Wang,
  • Zhanfeng Zhao,
  • Xin Xin,
  • Hanjie Ren,
  • Zhongyi Jiang

DOI
https://doi.org/10.34133/2021/9798564
Journal volume & issue
Vol. 2021

Abstract

Read online

The rational design of an outer shell is of great significance to promote the photocatalytic efficiency of core-shell structured photocatalysts. Herein, a covalent organic framework (COF) nanoshell was designed and deposited on the cadmium sulfide (CdS) core surface. A typical COF material, TPPA, featuring exceptional stability, was synthesized through interfacial polymerization using 1, 3, 5-triformylphloroglucinol (TP) and p-phenylenediamine (PA) as monomers. The nanoshell endows the CdS@TPPA nanosphere with ordered channels for unimpeded light-harvesting and fast diffusion of reactants/products and well-defined modular building blocks for spatially charge separation. Moreover, the heterojunction formed between CdS and TPPA can further facilitate the effective charge separation at the interface via lower exciton binding energy compared with that of pristine TPPA. By modulating the thickness of TPPA nanoshell, the CdS@TPPA nanosphere photocatalyst with the nanoshell thickness of about 8±1 nm exhibits the highest photocatalytic H2 evolution of 194.1 μmol h-1 (24.3 mmol g-1 h-1, 8 mg), which is superior to most of the reported COF-based photocatalysts. The framework nanoshell in this work may stimulate the thinking about how to design advanced shell architecture in the core-shell structured photocatalysts to achieve coordinated charge and molecule transport.