Вестник КазНУ. Серия математика, механика, информатика (Jun 2017)
Онтологические модели алгоритмов роевого интеллекта для иммунносетевого моделирования лекарственных препаратов
Abstract
Статья посвящена разработке информационной системы прогнозирования свойств новых лекарственных препаратов на основе методов роевого интеллекта и искусственных иммунных систем. Важным аспектом при прогнозировании зависимости между химическим строением вещества и их биологической активностью (QSAR, Quantitative Structure-Activity Relationship) является выбор дескрипторов. Перспективным направлением в области QSAR стало применение подходов искусственного интеллекта, которые обеспечивают высокую точность прогнозирования химических соединений с заданными свойствами. В статье рассматриваются методы пчелиной колонии и алгоритм роя частиц для решения задачи выделения информативных дескрипторов и дальнейшего иммунносетевого моделирования фармакологической активности химических соединений. Приведены существующие программные средства реализации данных алгоритмов для построения оптимального набора дескрипторов. Применение мультиалгоритмического подхода при иммунносетевом моделировании лекарств требует систематизации используемых методов и создание интегрированной онтологической модели. Разработка онтологических моделей позволяет структурировать входные и выходные данные, учитывать особенности функционирования и взаимосвязи, экономит временные и вычислительные ресурсы при разработке компонентно-ориентированного программного обеспечения для иммунносетевого моделирования новых химических веществ с заданной фармакологической активностью. Разработаны онтологические модели пчелиной колонии и алгоритма роя частиц для решения задачи выделения информативных дескрипторов в редактор онтологий Protege.