Structural Dynamics (Sep 2017)

Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers

  • Markus Kubin,
  • Jan Kern,
  • Sheraz Gul,
  • Thomas Kroll,
  • Ruchira Chatterjee,
  • Heike Löchel,
  • Franklin D. Fuller,
  • Raymond G. Sierra,
  • Wilson Quevedo,
  • Christian Weniger,
  • Jens Rehanek,
  • Anatoly Firsov,
  • Hartawan Laksmono,
  • Clemens Weninger,
  • Roberto Alonso-Mori,
  • Dennis L. Nordlund,
  • Benedikt Lassalle-Kaiser,
  • James M. Glownia,
  • Jacek Krzywinski,
  • Stefan Moeller,
  • Joshua J. Turner,
  • Michael P. Minitti,
  • Georgi L. Dakovski,
  • Sergey Koroidov,
  • Anurag Kawde,
  • Jacob S. Kanady,
  • Emily Y. Tsui,
  • Sandy Suseno,
  • Zhiji Han,
  • Ethan Hill,
  • Taketo Taguchi,
  • Andrew S. Borovik,
  • Theodor Agapie,
  • Johannes Messinger,
  • Alexei Erko,
  • Alexander Föhlisch,
  • Uwe Bergmann,
  • Rolf Mitzner,
  • Vittal K. Yachandra,
  • Junko Yano,
  • Philippe Wernet

DOI
https://doi.org/10.1063/1.4986627
Journal volume & issue
Vol. 4, no. 5
pp. 054307 – 054307-16

Abstract

Read online

X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn ∼ 6–15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions.