Nanomaterials (Aug 2022)

Lindqvist@Nanoporous MOF-Based Catalyst for Effective Desulfurization of Fuels

  • Simone Fernandes,
  • Daniela Flores,
  • Daniel Silva,
  • Isabel Santos-Vieira,
  • Fátima Mirante,
  • Carlos M. Granadeiro,
  • Salete S. Balula

DOI
https://doi.org/10.3390/nano12162887
Journal volume & issue
Vol. 12, no. 16
p. 2887

Abstract

Read online

An effective and sustainable oxidative desulfurization process for treating a multicomponent model fuel was successfully developed using as a heterogeneous catalyst a composite material containing as an active center the europium Lindqvist [Eu(W5O18)2]9− (abbreviated as EuW10) encapsulated into the nanoporous ZIF-8 (zeolitic imidazolate framework) support. The EuW10@ZIF-8 composite was obtained through an impregnation procedure, and its successful preparation was confirmed by various characterization techniques (FT-IR, XRD, SEM/EDS, ICP-OES). The catalytic activity of the composite and the isolated EuW10 was evaluated in the desulfurization of a multicomponent model fuel containing dibenzothiophene derivatives (DBT, 4-MDBT and 4,6-DMDBT) with a total sulfur concentration of 1500 ppm. Oxidative desulfurization was performed using an ionic liquid as extraction solvent and aqueous hydrogen peroxide as oxidant. The catalytic results showed a remarkable desulfurization performance, with 99.5 and 94.7% sulfur removal in the first 180 min, for the homogeneous active center EuW10 and the heterogeneous EuW10@ZIF-8 catalysts, respectively. Furthermore, the stability of the nanocomposite catalyst was investigated by reusing and recycling processes. A superior retention of catalyst activity in consecutive desulfurization cycles was observed in the recycling studies when compared with the reusing experiments. Nevertheless, the nanostructure of ZIF-8 incorporating the active POM (polyoxometalate) was shown to be highly suitable for guaranteeing the absence of POM leaching, although structural modification was found for ZIF-8 after catalytic use that did not influenced catalytic performance.

Keywords