Remote Sensing (Jan 2016)

Differentiating among Four Arctic Tundra Plant Communities at Ivotuk, Alaska Using Field Spectroscopy

  • Sara N. Bratsch,
  • Howard E. Epstein,
  • Marcel Buchhorn,
  • Donald A. Walker

DOI
https://doi.org/10.3390/rs8010051
Journal volume & issue
Vol. 8, no. 1
p. 51

Abstract

Read online

Warming in the Arctic has resulted in changes in the distribution and composition of vegetation communities. Many of these changes are occurring at fine spatial scales and at the level of individual species. Broad-band, coarse-scale remote sensing methods are commonly used to assess vegetation changes in the Arctic, and may not be appropriate for detecting these fine-scale changes; however, the use of hyperspectral, high resolution data for assessing vegetation dynamics remains scarce. The aim of this paper is to assess the ability of field spectroscopy to differentiate among four vegetation communities in the Low Arctic of Alaska. Primary data were collected from the North Slope site of Ivotuk, Alaska (68.49°N, 155.74°W) and analyzed using spectrally resampled hyperspectral narrowbands (HNBs). A two-step sparse partial least squares (SPLS) and linear discriminant analysis (LDA) was used for community separation. Results from Ivotuk were then used to predict community membership at five other sites along the Dalton Highway in Arctic Alaska. Overall classification accuracy at Ivotuk ranged from 84%–94% and from 55%–91% for the Dalton Highway test sites. The results of this study suggest that hyperspectral data acquired at the field level, along with the SPLS and LDA methodology, can be used to successfully discriminate among Arctic tundra vegetation communities in Alaska, and present an improvement over broad-band, coarse-scale methods for community classification.

Keywords