Nature Communications (Jul 2020)

VoPo leverages cellular heterogeneity for predictive modeling of single-cell data

  • Natalie Stanley,
  • Ina A. Stelzer,
  • Amy S. Tsai,
  • Ramin Fallahzadeh,
  • Edward Ganio,
  • Martin Becker,
  • Thanaphong Phongpreecha,
  • Huda Nassar,
  • Sajjad Ghaemi,
  • Ivana Maric,
  • Anthony Culos,
  • Alan L. Chang,
  • Maria Xenochristou,
  • Xiaoyuan Han,
  • Camilo Espinosa,
  • Kristen Rumer,
  • Laura Peterson,
  • Franck Verdonk,
  • Dyani Gaudilliere,
  • Eileen Tsai,
  • Dorien Feyaerts,
  • Jakob Einhaus,
  • Kazuo Ando,
  • Ronald J. Wong,
  • Gerlinde Obermoser,
  • Gary M. Shaw,
  • David K. Stevenson,
  • Martin S. Angst,
  • Brice Gaudilliere,
  • Nima Aghaeepour

DOI
https://doi.org/10.1038/s41467-020-17569-8
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 9

Abstract

Read online

Single-cell technologies are increasingly prominent in clinical applications, but predictive modelling with such data in large cohorts has remained computationally challenging. We developed a new algorithm, ‘VoPo’, for predictive modelling and visualization of single cell data for translational applications.