Biomechanics (Sep 2023)
Long Jump Performance Is Not Related to Inter-Limb Asymmetry in Force Application in Isometric and Vertical Jump Tests
Abstract
The aim of the study was to examine the inter-limb asymmetry in force application in a 1-s maximum isometric leg press test (ISOM) and vertical jump tests without an arm swing (VJ)of male long jumpers. Nine experienced jumpers (age: 18–30 y, LJ personal best: 6.50–8.05 m) were examined. Participants performed: (a) bilateral VJs from the squatting position (SQJ) and with a countermovement (CMJ), (b) unilateral CMJ from the take-off (TOL) and swing (SWL) leg used in the LJ take-off, and c) bilateral 1-s ISOM tests. Data were collected for each lower limb with separate force dynamometers (sampling frequency: VJs = 1 kHz, ISOM = 500 Hz). The inter-limb asymmetry of the peak applied force was evaluated using the symmetry angle. The paired samples T-test revealed non-significant (p > 0.05) inter-limb differences for the force output in the bilateral jump tests, in the unilateral jump tests, and in the ISOM. In conclusion, despite the fact that a powerful unilateral take-off is required for the optimization of long jump performance, no asymmetry was found in the examined tests, suggesting that the dominant/take-off leg was not stronger than the contra-lateral leg. This is possibly due to the intensive execution of other bilateral tasks involved, like the approach run.
Keywords