Sensors (Jul 2020)

Predictive Modeling of a Leaf Conceptual Midpoint Quasi-Color (CMQ) Using an Artificial Neural Network

  • Ivan Simko

DOI
https://doi.org/10.3390/s20143938
Journal volume & issue
Vol. 20, no. 14
p. 3938

Abstract

Read online

The color of plant leaves is moderated by the content of pigments, which can show considerable dorsiventral distribution. Two typical examples are leafy vegetables and ornamentals, wherein red and green color surfaces can be seen on the same leaf. The proof of concept is provided for predictive modeling of a leaf conceptual mid-point quasi-color (CMQ) from the content of pigments. The CMQ idea is based on the hypothesis that the content of pigments in leaves is associated with the combined color from both surfaces. The CMQ, which is calculated from CIELab color coordinates at adaxial and abaxial antipodes, is thus not an actual color, but a notion that can be used in modeling. The CMQ coordinates, predicted from the content of chlorophylls and anthocyanins by means of an artificial neural network (ANN), matched well with the CMQ coordinates empirically found on photosynthetically active leaves of lettuce (Lactuca sativa L.), but also with other plant species with comparable leaf attributes. Modeled values of lightness (qL*) decreased with the increasing content of both pigments, while the redness or greenness (qa*) and yellowness or blueness (qb*) of the CMQ were affected more by a relative content of chlorophylls and anthocyanins in leaves. The highest vividness of quasi-colors (qC*) was modeled for leaves with a high content of either pigment alone. The model predicted a substantially duller quasi-color for leaves with chlorophylls and anthocyanins present together, particularly when both pigments were present at very high levels.

Keywords