Geoscientific Model Development (Aug 2024)
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
Abstract
Meteorological fronts are important due to their associated surface impacts, including extreme precipitation and extreme winds. Objective identification of fronts is therefore of interest in both operational weather prediction and research settings. The aim of this study is to produce a front identification algorithm based on earlier studies that is portable and scalable to different resolution datasets. We have made a number of changes to an earlier objective front identification algorithm, applied these to reanalysis datasets, and present the improvements associated with these changes. First, we show that a change in the order of operations yields smoother fronts with fewer breaks. Next, we propose the selection of the front identification thresholds in terms of climatological quantiles of the threshold fields. This allows for comparison between datasets of differing resolutions. Finally, we include a number of numerical improvements in the implementation of the algorithm and better handling of short fronts, which yield further benefits in the smoothness and number of breaks. This updated version of the algorithm has been made fully portable and scalable to different datasets in order to enable future climatological studies of fronts and their impacts.