Biomaterials Research (Oct 2023)

GM-CSF augmented the photothermal immunotherapeutic outcome of self-driving gold nanoparticles against a mouse CT-26 colon tumor model

  • Jie Dai,
  • Jianmei Li,
  • Yuqin Zhang,
  • Qian Wen,
  • Yun Lu,
  • Yu Fan,
  • Fancai Zeng,
  • Zhiyong Qian,
  • Yan Zhang,
  • Shaozhi Fu

DOI
https://doi.org/10.1186/s40824-023-00430-6
Journal volume & issue
Vol. 27, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Hypoxia is a frequent characteristic observed in solid tumors and is strongly associated with tumor metastasis, angiogenesis, and drug resistance. While the vasculature of hypoxic tumor tissues poses obstacles to the efficient administration of conventional drugs, it may prove advantageous in sustaining hyperthermia. Photothermal therapy (PTT) offers a promising treatment strategy that utilizes the activation of photosensitizers to produce heat, thus facilitating the selective ablation of tumor tissues. Method To enhance the accumulation of photothermal agents in tumor tissue and improve the effectiveness of PTT, we developed a self-propelled hybrid called Bif@PAu-NPs. This hybrid consists of polydopamine (PDA)-coated gold nanoparticles (Au-NPs) loaded onto the anaerobic Bifidobacterium infantis (Bif). Results The Bif@PAu-NPs actively aggregated at the tumor site because the ability of Bif can target hypoxic regions, and PAu-NPs achieved precise PTT due to their high photothermal conversion efficiency (η = 67.8%). The tumor tissues were ablated by PTT, resulting in the release of antigens through immunogenic cell death (ICD), which stimulates an immune response. The inclusion of GM-CSF enhanced the immune response by recruiting dendritic cells and initiating long-term anti-tumor immunity. Conclusion The Bif@PAu-NPs hybrid effectively suppressed the growth of both primary tumors and re-challenged tumors. The utilization Bif@PAu-NPs in conjunction with GM-SCF exhibits great potential as a photothermal-immunotherapeutic strategy for precisely treating solid tumors. Graphical Abstract In this study, the bacterial Bif@PAu-NPs biohybrid is exploited the self-driving ability of anaerobic Bifidobacterium infantis to deliver polydopamine-modified gold nanoparticles to hypoxic region of tumor. Under irradiation with 808 nm NIR laser, the hybrid exerts precise photothermal therapy to stimulate the immune response, which is further enhanced by GM-CSF, leading to recruitment of dendritic cells and initiation of a long-term anti-tumor immunity remember to prevent tumor recurrence.

Keywords