Computer Vision and Deep Learning for Precision Viticulture
Lucas Mohimont,
François Alin,
Marine Rondeau,
Nathalie Gaveau,
Luiz Angelo Steffenel
Affiliations
Lucas Mohimont
Laboratoire d’Informatique en Calcul Intensif et Image pour la Simulation (LICIIS), Université de Reims Champagne Ardenne, Campus Moulin de la Housse, 51097 Reims, France
François Alin
Laboratoire d’Informatique en Calcul Intensif et Image pour la Simulation (LICIIS), Université de Reims Champagne Ardenne, Campus Moulin de la Housse, 51097 Reims, France
Marine Rondeau
Vranken-Pommery Monopole, 51100 Reims, France
Nathalie Gaveau
Laboratoire Résistance Induite et Bioprotection des Plantes RIBP—USC INRAE, Université de Reims Champagne-Ardenne, Campus Moulin de la Housse, 51100 Reims, France
Luiz Angelo Steffenel
Laboratoire d’Informatique en Calcul Intensif et Image pour la Simulation (LICIIS), Université de Reims Champagne Ardenne, Campus Moulin de la Housse, 51097 Reims, France
During the last decades, researchers have developed novel computing methods to help viticulturists solve their problems, primarily those linked to yield estimation of their crops. This article aims to summarize the existing research associated with computer vision and viticulture. It focuses on approaches that use RGB images directly obtained from parcels, ranging from classic image analysis methods to Machine Learning, including novel Deep Learning techniques. We intend to produce a complete analysis accessible to everyone, including non-specialized readers, to discuss the recent progress of artificial intelligence (AI) in viticulture. To this purpose, we present work focusing on detecting grapevine flowers, grapes, and berries in the first sections of this article. In the last sections, we present different methods for yield estimation and the problems that arise with this task.