Scientific Reports (Jul 2023)

A gelatin hydrogel nonwoven fabric improves outcomes of subcutaneous islet transplantation

  • Norifumi Kanai,
  • Akiko Inagaki,
  • Yasuhiro Nakamura,
  • Takehiro Imura,
  • Hiroaki Mitsugashira,
  • Ryusuke Saito,
  • Shigehito Miyagi,
  • Kimiko Watanabe,
  • Takashi Kamei,
  • Michiaki Unno,
  • Yasuhiko Tabata,
  • Masafumi Goto

DOI
https://doi.org/10.1038/s41598-023-39212-4
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Subcutaneous islet transplantation is a promising treatment for severe diabetes; however, poor engraftment hinders its prevalence. We previously reported that a recombinant peptide (RCP) enhances subcutaneous islet engraftment. However, it is impractical for clinical use because RCP must be removed when transplanting islets. We herein investigated whether a novel bioabsorbable gelatin hydrogel nonwoven fabric (GHNF) could improve subcutaneous islet engraftment. A silicon spacer with or without GHNF was implanted into the subcutaneous space of diabetic mice. Syngeneic islets were transplanted into the pretreated space or intraportally (Ipo group). Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, CT angiography and gene expression were evaluated. The cure rate and glucose tolerance of the GHNF group were significantly better than in the control and Ipo groups (p < 0.01, p < 0.05, respectively). In the GHNF group, a limited increase of vWF-positive vessels was detected in the islet capsule, whereas laminin (p < 0.05), collagen III and IV were considerably enhanced. TaqMan arrays revealed a significant upregulation of 19 target genes (including insulin-like growth factor-2) in the pretreated space. GHNF markedly improved the subcutaneous islet transplantation outcomes, likely due to ECM compensation and protection of islet function by various growth factors, rather than enhanced neovascularization.