First-principles calculations of hematite (α-Fe2O3) by self-consistent DFT+U+V
Nelson Naveas,
Ruth Pulido,
Carlo Marini,
Jacobo Hernández-Montelongo,
Miguel Manso Silván
Affiliations
Nelson Naveas
Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile; Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera” (INC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; Corresponding author
Ruth Pulido
Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile; Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera” (INC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
Carlo Marini
CELLS–ALBA Synchrotron, 08290 Cerdanyola del Valles, Spain
Jacobo Hernández-Montelongo
Departamento de Ciencias Matemáticas y Físicas, UC Temuco, 4813302 Temuco, Chile; Corresponding author
Miguel Manso Silván
Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera” (INC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
Summary: Owing to the confined Fe-3d orbitals and self-interaction error of exchange-correlation functionals, approximate DFT fails to describe iron oxides electronic structure and magnetic properties accurately. Hybrid DFT or DFT + U can solve these problems, but the former is expensive, and the latter only considers on-site interactions. Here, we used DFT + U + V, a DFT + U extension including inter-site interactions, to simulate the structural, magnetic, and electronic properties, along with Fe and O K-edge XAS spectra of α-Fe2O3. Two types of atomic orbital projectors were studied, orthogonalized and non-orthogonalized. DFT + U + V improves the description of the structural, magnetic, and electronic properties of α-Fe2O3 compared to approximate DFT. The accuracy of the correction depends on the orbital projector used. DFT + U + V with orthogonalized projectors achieves the best experimental agreement at a fraction of hybrid DFT cost. This work emphasizes the importance of inter-site interactions and the type of atomic orbital projectors used in the theoretical research of α-Fe2O3.