Bioengineering (Jul 2023)

A Boundary-Enhanced Liver Segmentation Network for Multi-Phase CT Images with Unsupervised Domain Adaptation

  • Swathi Ananda,
  • Rahul Kumar Jain,
  • Yinhao Li,
  • Yutaro Iwamoto,
  • Xian-Hua Han,
  • Shuzo Kanasaki,
  • Hongjie Hu,
  • Yen-Wei Chen

DOI
https://doi.org/10.3390/bioengineering10080899
Journal volume & issue
Vol. 10, no. 8
p. 899

Abstract

Read online

Multi-phase computed tomography (CT) images have gained significant popularity in the diagnosis of hepatic disease. There are several challenges in the liver segmentation of multi-phase CT images. (1) Annotation: due to the distinct contrast enhancements observed in different phases (i.e., each phase is considered a different domain), annotating all phase images in multi-phase CT images for liver or tumor segmentation is a task that consumes substantial time and labor resources. (2) Poor contrast: some phase images may have poor contrast, making it difficult to distinguish the liver boundary. In this paper, we propose a boundary-enhanced liver segmentation network for multi-phase CT images with unsupervised domain adaptation. The first contribution is that we propose DD-UDA, a dual discriminator-based unsupervised domain adaptation, for liver segmentation on multi-phase images without multi-phase annotations, effectively tackling the annotation problem. To improve accuracy by reducing distribution differences between the source and target domains, we perform domain adaptation at two levels by employing two discriminators, one at the feature level and the other at the output level. The second contribution is that we introduce an additional boundary-enhanced decoder to the encoder–decoder backbone segmentation network to effectively recognize the boundary region, thereby addressing the problem of poor contrast. In our study, we employ the public LiTS dataset as the source domain and our private MPCT-FLLs dataset as the target domain. The experimental findings validate the efficacy of our proposed methods, producing substantially improved results when tested on each phase of the multi-phase CT image even without the multi-phase annotations. As evaluated on the MPCT-FLLs dataset, the existing baseline (UDA) method achieved IoU scores of 0.785, 0.796, and 0.772 for the PV, ART, and NC phases, respectively, while our proposed approach exhibited superior performance, surpassing both the baseline and other state-of-the-art methods. Notably, our method achieved remarkable IoU scores of 0.823, 0.811, and 0.800 for the PV, ART, and NC phases, respectively, emphasizing its effectiveness in achieving accurate image segmentation.

Keywords