Materials Today Bio (Apr 2024)
Nanotexture and crystal phase regulation for synergistic enhancement in re-endothelialization on medical pure titanium surface
Abstract
Re-endothelialization has been recognized as a promising strategy to address the tissue hyperplasia and subsequent restenosis which are major complications associated with vascular implant/interventional titanium devices. However, the uncontrollable over-proliferation of smooth muscle cells (SMCs) limits the clinical application of numerous modified strategies. Herein, a novel modified strategy involving with a two-step anodic oxidation and annealing treatment was proposed to achieve rapid re-endothelialization function regulated by regular honeycomb nanotexture and specific anatase phase on the titanium surface. Theoretical calculation revealed that the presence of nanotexture reduced the polar component of surface energy, while the generation of anatase significantly enhanced the polar component and total surface energy. Meanwhile, the modified surface with regular nanotexture and anatase phase produced positive effect on the expression of CD31, VE-Cadherin and down-regulated α-SMA proteins expression, indicating excellent capacity of pro-endothelial regeneration and inhibition of SMCs proliferation and migration. One-month in vivo implantation in rabbit carotid arteries further confirmed that modified tube implant surface effectively accelerated confluent endothelial monolayer formation and promoted native-like endothelium tissue regeneration. By contrast, original titanium tube implant induced a disorganized tissue proliferation in the lumen with a high risk of restenosis. Collectively, this study opens us an alternative route to achieve the function that selectively promotes endothelial cells (ECs) growth and suppresses SMCs on the medical titanium surface, which has a great potential in facilitating re-endothelialization on the surface of blood-contacting titanium implant.