Characterization of Human Immortalized Keratinocyte Cells Infected by Monkeypox Virus
Chaode Gu,
Zhiqiang Huang,
Yongyang Sun,
Shaowen Shi,
Xiubo Li,
Nan Li,
Yang Liu,
Zhendong Guo,
Ningyi Jin,
Zongzheng Zhao,
Xiao Li,
Hongwei Wang
Affiliations
Chaode Gu
State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
Zhiqiang Huang
State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
Yongyang Sun
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China
Shaowen Shi
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China
Xiubo Li
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China
Nan Li
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China
Yang Liu
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China
Zhendong Guo
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China
Ningyi Jin
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China
Zongzheng Zhao
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China
Xiao Li
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China
Hongwei Wang
State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
Monkeypox virus (MPXV) can induce systemic skin lesions after infection. This research focused on studying MPXV proliferation and the response of keratinocytes. Using transmission electron microscopy (TEM), we visualized different stages of MPXV development in human immortalized keratinocytes (HaCaT). We identified exocytosis of enveloped viruses as the exit mechanism for MPXV in HaCaT cells. Infected keratinocytes showed submicroscopic changes, such as the formation of vesicle-like structures through the recombination of rough endoplasmic reticulum membranes and alterations in mitochondrial morphology. Transcriptome analysis revealed the suppressed genes related to interferon pathway activation and the reduced expression of antimicrobial peptides and chemokines, which may facilitate viral immune evasion. In addition, pathway enrichment analysis highlighted systemic lupus erythematosus pathway activation and the inhibition of the Toll-like receptor signaling and retinol metabolism pathways, providing insights into the mechanisms underlying MPXV-induced skin lesions. This study advances our understanding of MPXV’s interaction with keratinocytes and the complex mechanisms leading to skin lesions.