Lipids in Health and Disease (Jan 2005)

Prolonged treatment of genetically obese mice with conjugated linoleic acid improves glucose tolerance and lowers plasma insulin concentration: possible involvement of PPAR activation

  • Einerhand Alexandra WC,
  • Wang Steven,
  • O'Dowd Jacqueline,
  • Brown Louise,
  • Mayes Andrew E,
  • Stocker Claire,
  • Sennitt Matthew V,
  • Wargent Ed,
  • Mohede Inge,
  • Arch Jonathan RS,
  • Cawthorne Michael A

DOI
https://doi.org/10.1186/1476-511X-4-3
Journal volume & issue
Vol. 4, no. 1
p. 3

Abstract

Read online

Abstract Background Studies in rodents and some studies in humans have shown that conjugated linoleic acid (CLA), especially its trans-10, cis-12 isomer, reduces body fat content. However, some but not all studies in mice and humans (though none in rats) have found that CLA promotes insulin resistance. The molecular mechanisms responsible for these effects are unclear, and there are conflicting reports on the effects of CLA on peroxisomal proliferator-activated receptor-γ (PPARγ) activation and expression. We have conducted three experiments with CLA in obese mice over three weeks, and one over eleven weeks. We have also investigated the effects of CLA isomers in PPARγ and PPARα reporter gene assays. Results Inclusion of CLA or CLA enriched with its trans-10, cis-12 isomer in the diet of female genetically obese (lepob/lepob) mice for up to eleven weeks reduced body weight gain and white fat pad weight. After two weeks, in contrast to beneficial effects obtained with the PPARγ agonist rosiglitazone, CLA or CLA enriched with its trans-10, cis-12 isomer raised fasting blood glucose and plasma insulin concentrations, and exacerbated glucose tolerance. After 10 weeks, however, CLA had beneficial effects on glucose and insulin concentrations. At this time, CLA had no effect on the plasma TNFα concentration, but it markedly reduced the plasma adiponectin concentration. CLA and CLA enriched with either isomer raised the plasma triglyceride concentration during the first three weeks, but not subsequently. CLA enriched with its trans-10, cis-12 isomer, but not with its cis-9, trans-11 isomer, stimulated PPARγ-mediated reporter gene activity; both isomers stimulated PPARα-mediated reporter gene activity. Conclusions CLA initially decreased but subsequently increased insulin sensitivity in lepob/lepob mice. Activation of both PPARγ and PPARα may contribute to the improvement in insulin sensitivity. In the short term, however, another mechanism, activated primarily by trans-10, cis-12-CLA, which probably leads to reduced adipocyte number and consequently reduced plasma adiponectin concentration, may decrease insulin sensitivity.