PLoS ONE (Jan 2012)

Induction of VMAT-1 and TPH-1 expression induces vesicular accumulation of serotonin and protects cells and tissue from cooling/rewarming injury.

  • Fatemeh Talaei,
  • Martina Schmidt,
  • Robert H Henning

DOI
https://doi.org/10.1371/journal.pone.0030400
Journal volume & issue
Vol. 7, no. 1
p. e30400

Abstract

Read online

DDT₁ MF-2 hamster ductus deferens cells are resistant to hypothermia due to serotonin secretion from secretory vesicles and subsequent cystathionine beta synthase (CBS) mediated formation of H₂S. We investigated whether the mechanism promoting resistance to hypothermia may be translationally induced in cells vulnerable to cold storage. Thus, VMAT-1 (vesicular monoamino transferase) and TPH-1 (tryptophan hydroxylase) were co-transfected in rat aortic smooth muscle cells (SMAC) and kidney tissue to create a serotonin-vesicular phenotype (named VTSMAC and VTkidney, respectively). Effects on hypothermic damage were assessed. VTSMAC showed a vesicular phenotype and an 8-fold increase in serotonin content and 5-fold increase in its release upon cooling. Cooled VTSMAC produced up to 10 fold higher concentrations of H₂S, and were protected from hypothermia, as shown by a 50% reduction of caspase 3/7 activity and 4 times higher survival compared to SMAC. Hypothermic resistance was abolished by the inhibition of CBS activity or blockade of serotonin re-uptake. In VTkidney slices, expression of CBS was 3 fold increased in cold preserved kidney tissue, with two-fold increase in H₂S concentration. While cooling induced substantial damage to empty vector transfected kidney as shown by caspase 3/7 activity and loss of FABP1, VTkidney was fully protected and comparable to non-cooled control. Thus, transfection of VMAT-1 and TPH-1 induced vesicular storage of serotonin which is triggered release upon cooling and has protective effects against hypothermia. The vesicular serotonergic phenotype protects against hypothermic damage through re-uptake of serotonin inducing CBS mediated H₂S production both in cells and kidney slices.