Terrestrial, Atmospheric and Oceanic Sciences (Apr 2016)

Heterogeneous Slip Distribution Self-Similarity on a Fault Surface

  • Ya-Ting Lee,
  • Kuo-Fong Ma,
  • Yin-Tung Yen

DOI
https://doi.org/10.3319/TAO.2015.11.05.01(T)
Journal volume & issue
Vol. 27, no. 2
pp. 181 – 193

Abstract

Read online

The earthquake slip distribution self-similarity is investigated in this study. We complied finite fault slip models for earthquakes in the Taiwan orogenic belt and global earthquakes to determine the slip distribution self-similarity. Forty-one earthquakes (19 Taiwan earthquakes and 22 global earthquakes) in the Mw = 4.6 - 8.9 magnitude range were examined. The fault slip exhibited self-similar scaling between the rupture slip and area. The average area ratio (Rs) and slip ratio (Rd) follows a scaling of Rs = 10a - n(Rd). Slip self-similarity implies that a fault rupture exhibits fractal behavior. The scaling exponent can be considered as a measure for the roughness degree of the slip distribution on the fault surface. This study suggests that the slip distribution for large earthquakes (Mw > 7.0) tends to have a more homogeneous slip. Scaling exponents can provide insight into earthquake rupture mechanics and the scaling of heterogeneous slips on the fault surface provides a basis for ground motion simulation for a finite fault for an earthquake scenario, particularly for near-fault motion.

Keywords