Nanomaterials (Feb 2019)
Micro-Structured Polydopamine Films via Pulsed Electrochemical Deposition
Abstract
Polydopamine (PDA) films are interesting as smart functional materials, and their controlled structured formation plays a significant role in a wide range of applications ranging from cell adhesion to sensing and catalysis. A pulsed deposition technique is reported for micro-structuring polydopamine films using scanning electrochemical microscopy (SECM) in direct mode. Thereby, precise and reproducible film thicknesses of the deposited spots could be achieved ranging from 5.9 +/− 0.48 nm (1 pulse cycle) to 75.4 nm +/− 2.5 nm for 90 pulse cycles. The obtained morphology is different in comparison to films deposited via cyclic voltammetry or films formed by autooxidation showing a cracked blister-like structure for high pulse cycle numbers. The obtained polydopamine spots were investigated in respect to their electrochemical properties using SECM approach curves. Quantitative kinetic data in dependence of the film thickness, the substrate potential, and the used redox species were obtained.
Keywords