Scientific Reports (Jun 2021)

Neonatal administration of a subanaesthetic dose of JM-1232(−) in mice results in no behavioural deficits in adulthood

  • Koji Iwanaga,
  • Yasushi Satoh,
  • Ryosuke Akai,
  • Toshiaki Ishizuka,
  • Tomiei Kazama,
  • Takehiko Ikeda

DOI
https://doi.org/10.1038/s41598-021-92344-3
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 12

Abstract

Read online

Abstract In animal models, neonatal exposure of general anaesthetics significantly increases apoptosis in the brain, resulting in persistent behavioural deficits later in adulthood. Consequently, there is growing concern about the use of general anaesthetics in obstetric and paediatric practice. JM-1232(−) has been developed as a novel intravenous anaesthetic, but the effects of JM-1232(−) on the developing brain are not understood. Here we show that neonatal administration of JM-1232(−) does not lead to detectable behavioural deficits in adulthood, contrarily to other widely-used intravenous anaesthetics. At postnatal day 6 (P6), mice were injected intraperitoneally with a sedative-equivalent dose of JM-1232(−), propofol, or midazolam. Western blot analysis of forebrain extracts using cleaved poly-(adenosine diphosphate-ribose) polymerase antibody showed that JM-1232(−) is accompanied by slight but measurable apoptosis 6 h after administration, but it was relatively small compared to those of propofol and midazolam. Behavioural studies were performed in adulthood, long after the neonatal anaesthesia, to evaluate the long-term effects on cognitive, social, and affective functions. P6 administration to JM-1232(−) was not accompanied by detectable long-term behavioural deficits in adulthood. However, animals receiving propofol or midazolam had impaired social and/or cognitive functions. These data suggest that JM-1232(−) has prospects for use in obstetric and paediatric practice.