Pollutants (May 2024)
Effective Removal of Microplastic Particles from Wastewater Using Hydrophobic Bio-Substrates
Abstract
The rapid increase in soil and water pollution is primarily attributed to anthropogenic factors, notably the mismanagement of post-consumer plastics on a global scale. This exploratory research design evaluated the effectiveness of natural hydrophobic cattail (Typha Latifolia) fibres (CFs) as bio-adsorbents of microplastic particles (MPPs) from wastewater. The study investigates how the composition of the adsorption environment affects the adsorption rate. Straightforward batch adsorption tests were conducted to evaluate the “spontaneous” sorption of MPPs onto CFs. Five MPP materials (PVC, PP, LDPE, HDPE, and Nylon 6) were evaluated. Industrial wastewater (PW) and Type II Distilled Water (DW) were employed as adsorption environments. The batch test results show that CFs are effective in removing five MPP materials from DW and PW. However, a higher removal percentage of MPPs was observed in PW, ranging from 89% to 100% for PVC, PP, LDPE, and HDPE, while the adsorption of Nylon 6 increased to 29.9%, a removal increase of 50%. These findings indicate that hydrophobic interactions drive the “spontaneous and instantaneous” adsorption process and that adjusting the adsorption environment can effectively enhance the MPP removal rate. This research highlights the significant role that bio-substrates can play in mitigating environmental pollution, serving as efficient, sustainable, non-toxic, biodegradable, low-cost, and reliable adsorbents for the removal of MPPs from wastewaters.
Keywords