Cancer Cell International (Jan 2021)

MCCC2 promotes HCC development by supporting leucine oncogenic function

  • Yu-Yan Chen,
  • Xue-Ning Zhang,
  • Chen-Zhou Xu,
  • Dan-Hua Zhou,
  • Jing Chen,
  • Zhao-Xiu Liu,
  • Ying sun,
  • Wei Huang,
  • Li-Shuai Qu

DOI
https://doi.org/10.1186/s12935-020-01722-w
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background The role of methylcrotonoyl-CoA carboxylase 2 (MCCC2) in the development of tumors is well-established, and the involvement of leucine in the liver is well-known. However, the role of MCCC2 and the correlation between MCCC2 and leucine in the progression of hepatocellular carcinoma (HCC) have not yet been reported. Methods In this study, the Gepia database was used to evaluate the prognostic value of MCCC2 in HCC. The expression and localization of MCCC2 in HCC cells were determined by western blot and immunofluorescence assays. Flow cytometry and CCK-8 and transwell assays were carried out to explore the effect of MCCC2 on cell proliferation, migration, and invasion. In addition, mass spectrometry analysis was used to predict the potential cell function of MCCC2 in HCC. Results We found that the expression of MCCC2 increased in HCC tissues and that high expression of MCCC2 could predict poor outcomes in HCC patients. Knockdown expression of MCCC2 in HCC cells could reduce cell proliferation, migration, and invasion ability in vitro and could inhibit HCC cell proliferation in vivo. Interestingly, we found that HCC cells transfected with MCCC2-sgRNA failed to respond to leucine deprivation. Meanwhile, leucine deprivation inhibited cell proliferation, migration, and invasion in HCC cells where MCCC2 was present rather than in cells where MCCC2 was absent. In addition, knockdown of MCCC2 significantly reduced the glycolysis markers, glucose consumption, lactate secretion, and acetyl-CoA level, which is a product of leucine metabolism. Furthermore, we found that MCCC2 promotes the activation of ERK. Profiling the MCCC2 binding proteins revealed that MCCC2-associated proteins are enriched in biological processes, such as protein metabolism, energy pathway, and metabolism in HCC cells. Conclusions Our findings revealed that MCCC2 plays a critical role in the development of HCC, and the leucine metabolism pathway might be a novel target in HCC treatment.

Keywords