A Novel Detection Model and Its Optimal Features to Classify Falls from Low- and High-Acceleration Activities of Daily Life Using an Insole Sensor System
Benjamin Cates,
Taeyong Sim,
Hyun Mu Heo,
Bori Kim,
Hyunggun Kim,
Joung Hwan Mun
Affiliations
Benjamin Cates
Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Korea
Taeyong Sim
Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Korea
Hyun Mu Heo
Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Korea
Bori Kim
Department of Research and Development, Biomaterial Team, Medical Device Development Center, KBIO HEALTH, 123 Osongsaengmyung-ro, Osong-eub, Heungdeok-gu, Cheongju, Chungbuk 28160, Korea
Hyunggun Kim
Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Korea
Joung Hwan Mun
Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Korea
In order to overcome the current limitations in current threshold-based and machine learning-based fall detectors, an insole system and novel fall classification model were created. Because high-acceleration activities have a high risk for falls, and because of the potential damage that is associated with falls during high-acceleration activities, four low-acceleration activities, four high-acceleration activities, and eight types of high-acceleration falls were performed by twenty young male subjects. Encompassing a total of 800 falls and 320 min of activities of daily life (ADLs), the created Support Vector Machine model’s Leave-One-Out cross-validation provides a fall detection sensitivity (0.996), specificity (1.000), and accuracy (0.999). These classification results are similar or superior to other fall detection models in the literature, while also including high-acceleration ADLs to challenge the classification model, and simultaneously reducing the burden that is associated with wearable sensors and increasing user comfort by inserting the insole system into the shoe.