Acta Scientiarum: Agronomy (Mar 2021)
Mathematical modeling and effect of thin-layer drying and lyophilization on antioxidant compounds from ultrasonic-assisted extracted Muntingia calabura peels
Abstract
Muntingia calabura fruits are rich in bioactive compounds such as antioxidants, and the consumption of these compounds is associated with cancer prevention and aging. In this study, mathematical models were used to fit the experimental data of the Muntingia calabura peel drying kinetics, and the effective diffusion coefficient, activation energy and thermodynamic properties of the process were determined. Then, the effect of the drying temperature on the antioxidant activity and phenolic compounds of fruit peels was examined using conventional extraction and ultrasonication. Among the analyzed models, the logarithmic model was selected to represent the drying phenomenon of the calabura peel kinetics. The effective diffusion coefficient decreased by 74% as the temperature increased from 40 to 60°C, and the activation energy for liquid diffusion during drying was 23.96 kJ mol-1. The enthalpy and entropy decreased with increasing temperature, while the Gibbs free energy increased by 5% for each 10°C increase in temperature. Regarding the content of phenolic compounds and the antioxidant activity of the calabura peel, it was observed that an increase in the drying temperature had a positive effect on the conservation of the bioactive compounds, making it possible to conclude that drying at 60°C and ultrasound extraction are the most suitable approach to conduct the process.
Keywords