Scientific Reports (Jun 2023)
Antimicrobial activity of cold atmospheric-pressure argon plasma combined with chicory (Cichorium intybus L.) extract against P. aeruginosa and E. coli biofilms
Abstract
Abstract The present study reports a significant combined antibacterial activity of Cichorium intybus L. (known as Chicory) natural extract with cold atmospheric-pressure argon plasma treatment against multi-drug resistant (MDR) Gram-negative bacteria. To detect reactive species that are generated in the argon plasma, optical emission spectra were recorded. The molecular bands were allocated to the hydroxyl radicals (OH) and neutral nitrogen molecules (N2). Moreover, the atomic lines form the emitted spectra were determined to argon atoms (Ar) and the oxygen atoms (O), respectively. The results revealed that Chicory extract treatment at a concentration of 0.043 g/ml reduced the metabolic activity of P. aeruginosa cells by 42%, while, a reduced metabolic activity of 50.6% was found for E. coli biofilms. Moreover, the combination of Chicory extract with 3 min Ar-plasma introduced a synergistic effect, so that it exhibited a significantly reduced metabolic activity of P. aeruginosa to 84.1%, and E. coli ones to 86.7%, respectively. The relationship between cell viability and membrane integrity of P. aeruginosa and E. coli biofilms treated with Chicory extract and argon plasma jet were also analyzed by CLSM. It was found that after the combined treatment, a noticeable membrane disruption was formed. Besides, it was concluded that E. coli biofilms showed a higher sensitivity to Ar-plasma than P. aeruginosa biofilm at longer plasma exposure times. This study suggests that the anti-biofilm therapy based on a combined effect of Chicory extract and cold argon plasma treatment can serve as a considerable green method for treatment of antimicrobial MDR bacteria.